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Abstract
The form of the momentum equation used in large-scale climate models to describe sea ice drift has

come under question, especially regarding the ice behavior in regions where ice concentration is low. In
this short note, we seek to illuminate the source of the controversy and give a careful explanation of how
the matter is addressed in our model. We begin with an overview of the model derivation to place the
issue in context, narrow the discussion to the free drift regime, then present results from a simulation
comparison that indicate the relative importance of changes made in the model.

1 Fundamentals

The vertically integrated, two-dimensional momentum equation generally applied in large-scale sea ice
models [5, for example] is

ρh
∂u

∂t
= ∇2 · σ + F (u), (1)

where u is the horizontal velocity vector (m/s), ρ represents (constant) ice density (kg/m3), h is the
actual thickness of the ice, ∇2 · σ is the horizontal divergence of the internal ice stress tensor, and F

represents surface (atmosphere and ocean drag) and body (Coriolis, sea surface tilting) forces acting on
the ice (N/m2),

F (u) = τa + τw(u) + τcor(u) + τtilt. (2)

Here we have indicated the standard velocity dependence of the forcing terms. Eq. (1) may be derived
from the equations of continuum mechanics [1], in which the local velocity, ũ, is determined from

ρ
∂ũ

∂t
= ∇3 · σ̃ + Fb, (3)

Here, σ̃ is the local stress tensor (N/m2) and Fb represents body forcing terms acting on the ice associated
with gravity (sea surface tilting) and the Coriolis effect.

We are interested only in the horizontal components of the ice motion. Integrate Eq. (3) over the
volume of ice in a grid cell of area A,

∫

A

∫ h

0

ρ
∂ũ

∂t
dz dA =

∫

A

∫ h

0

(∇3 · σ̃ + Fb) dz dA. (4)

Assuming that the volume of integration is an arbitrary “pillbox” with vertical surfaces on the sides, we
apply the divergence theorem to the first term on the right hand side of (4):

∫

A

∫ h

0

∇3 · σ̃ dz dA =

∮

∂V

n̂ · σ̃ dS2

=

∮

∂A

n̂ · σ̃ (h dS1) + σ̃z(h) − σ̃z(0)

=

∫

A

∇ · (hσ̃) dA + σ̃z(h) − σ̃z(0).
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The σ̃z terms represent forcing on the ice surface by the atmosphere and ocean, generally modeled as

τa ∝ |Ua|Ua,

τw ∝ |Uw − u| (Uw − u) ,

where Ua and Uw are wind and ocean current velocities, respectively [5]. We define σ = hσ̃, noting
that h is included in the definitions of the bulk and shear viscosities and the ice strength P used to define
σ in [5]. Additionally assuming that the velocity and the body force are vertically uniform, Eq. (4) may
be written

∫

A

ρh
∂u

∂t
dA =

∫

A

∇2 · σ dA +

∫

A

(τa + τw + hFb) dA.

Since the horizontal area of integration is arbitrary, this implies Eq. (1). In the numerical model we
average the momentum equation over the grid cell area; i.e., we solve

1

A

∫

A

ρh
∂u

∂t
dA =

1

A

∫

A

∇2 · σ dA +
1

A

∫

A

(τa + τw + hFb) dA. (5)

2 Free drift in the marginal ice zone

2.1 Statement of the problem

The derivation above assumes that the ice is a continuum material, distributed uniformly over the grid
cell. In cells without ice, the velocity in Eq. (5) is that of the interface between the atmosphere and the
ocean, and in partially ice covered cells, the velocity represents an average of the ice velocity and that
of the interface over open water. As discussed below, we have been making a crude numerical approxi-
mation in assuming that the computed velocity is that of the ice itself. This complicates comparison of
model results with observations, particularly in the marginal ice zone where the ice is undergoing free
drift.

In the model, the free drift approximation occurs when ∇2 · σ = 0. This is obtained in low ice
concentration regions by setting the ice strength to zero, P = 0, so that, assuming a quasi-steady state,

1

A

∫

A

F (u)dA = 0. (6)

This gives the computed velocity in areas of thin ice or low ice concentration (less than 85% in our
current model), including areas with no ice at all. Because the Coriolis and tilting terms (hFb in Eq. (5))
depend on the ice mass but the atmosphere and ocean drag terms do not, the velocity computed from (6)
depends on the ice concentration. In particular, if the forcing and ice thickness are the same in two grid
cells but the concentrations differ slightly, then the velocities in the grid cells will differ. This conflicts
with pointwise free drift theory, which asserts that the actual (not cell-averaged) ice velocity should be
uniform under uniform forcing, regardless of the concentration itself.

2.2 Resolution of the problem

In the integral equation (5), we may include what we know about the forces and u in the ice-free areas
to obtain a better approximation for the actual ice velocity in a grid cell. Where h = 0, (5) reduces to

1

A

∫

(1−c)A

[τa + τw(u)] dA = 0,

and hence
1

A

∫

F (u)dA =
1

A

∫

cA

F (u)dA,

where c is the ice covered area fraction. Therefore the only contribution of the forcing terms in Eq. (2)
to the momentum equation is from the sum of those terms over the ice covered fraction of the grid cell;
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over the ice-free fraction, their sum is zero. [NB The individual terms are not zero themselves, only the
sum is zero.]

This change does not represent a change in our interpretation of the forcing terms in (5); they still
represent an average over the entire grid cell, but now the computed average is more accurate due to
partitioning of the grid cell into ice covered and ice-free areas. The internal ice stress term in (5) can
not be reduced to ice-free and ice covered portions easily because of the continuum assumption made in
deriving the model, although we do assume that it is zero in low ice concentration regions for purposes
of computing free drift.

Although the velocity in the continuum equation necessarily represents an average over the entire
grid cell, we make an approximation that is tantamount to assuming that the computed velocity, u,
represents an average over just the ice-covered portion of the cell, or more simply, that all of the ice in
the cell is moving at the same velocity:

1

A

∫

A

ρh
∂u

∂t
dA =

1

A

∫

cA

ρh
∂u

∂t
dA

=

(

1

A

∫

cA

ρh dA

)

(

∫

cA
ρh∂u

∂t
dA

∫

cA
ρh dA

)

(7)

= m

〈

∂u

∂t

〉

≈ m
∂u

∂t
,

where m is ice mass per unit (grid cell) area. The approximation enters because the time derivative of
mass is nonzero.

2.3 Implementation

In our numerical model, the various terms in (2) are computed separately. We currently compute the
surface wind stress over each thickness of ice, aggregate those into an average quantity over ice, and
then scale the result to the entire grid cell area (because the surface stress over open water, τa0, is
computed elsewhere, not in the ice component model of the fully coupled CCSM system). That is, the
area averaged wind stress over a grid cell should be computed properly as

1

A

∫

τa dA ∼

N
∑

n=0

cnτan = c0τa0 +

N
∑

n=1

cnτan,

where n = 1, ..., N represent categories with finite ice thickness and c0 is the ice-free area fraction, but
because the ice model does not “know” τa0, we approximate the average wind stress over the full grid
cell as

1

A

∫

τa dA ∼
1

c

N
∑

n=1

cnτan.

However, because the sum of the forces over the ice-free area is zero, in fact we do not need to know
τa0; it cancels with the equivalent ice-ocean stress in the ice-free area of the cell. Therefore we apply
only the portion of the wind stress and ocean stress over the ice-covered area,

N
∑

n=1

(cnτan) + cτw(u). (8)

This simply involves removing the division of air stress by ice area fraction and multiplying the standard
ocean stress term by the ice area fraction. For coupled runs, the wind and ocean stresses over/under the
ice, given by (8), still need to be divided by c in order to be converted to the equivalent (unphysical) full
grid cell quantity (actually stress per unit ice area), as per the CCSM coupling conventions.

The Coriolis and tilting terms already incorporate the ice concentration through the ice mass per unit
area, thus requiring no change to the code. These terms are not sent to the coupler.
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3 Simulation results

3.1 Model configuration

Comparison of results from two simulations, with and without the ice concentration correction to the
wind and ocean terms (the test run and the control run, respectively), reveals the relative importance
of this correction. We compare results after 30 model years from a coupled ice-ocean model. The
simulations were run on a nominally 3◦ resolution global mesh (100x116 with 25 ocean depth levels) in
which the north pole singularity has been moved smoothly into Greenland. The grid is shown in Fig. 1.

The Parallel Ocean Program (POP) [9, 3, 4] is a member of the Bryan-Cox family of z-coordinate
ocean models, featuring hydrostatic, Boussinesq primitive equations for ocean temperature, salinity and
momentum, and an implicit free surface. The ocean model provides sea surface temperature, salinity,
currents, slope and a freezing or melting potential to the ice model. Additional information regarding
the POP ocean model can be obtained from
http://www.acl.lanl.gov/climate/models/pop/documentation/popdoc frames.htm; here we describe only
the model aspects most pertinent for the comparison simulations.

The Los Alamos sea ice model, CICE, features energy conserving thermodynamics along with
energy-based ridging and ice strength using an ice thickness distribution with five ice thickness cate-
gories, and an incremental remapping advection scheme. The momentum equation is part of the elastic-
viscous-plastic dynamics component [5, 6]. The ice model provides a fresh water flux, net heat flux and
ice-ocean stress to the ocean model. The ice model is fully documented in [7].

The ice and ocean models are coupled via a modified version of the “flux coupler” developed jointly
at the National Center for Atmospheric Research (NCAR) and Los Alamos National Laboratory [2].
The coupler serves as a driver for and interface between the component models: CICE, POP, and a third
component that reads atmospheric data from files and prepares the data for use by the other components.
The coupler merges ice and ocean quantities based on the ice area fraction in cells where there is less
than 100% ice coverage. Momentum exchange is accomplished through a quadratic ice-ocean drag term
computed by the ice model using level 1 currents.

Wind velocity, specific humidity, air density and potential temperature are used to compute stability-
dependent transfer coefficients used in formulas for the surface wind stress and turbulent heat fluxes over
both ice and ocean. The 1979–1988 atmospheric forcing data includes six-hourly, T62 resolution, 10 m
data for air temperature, air density, specific humidity, and wind velocity from the National Centers for
Environmental Prediction (NCEP) reanalyses, International Satellite Cloud Climatology Project (ISCCP)
[8] monthly downward shortwave radiation flux and cloud fraction, and monthly precipitation fields
(MSU) [10]. The model also incorporates a monthly climatology for river runoff.

3.2 Results

Fig. 2 shows the difference in ice area and velocity for January of year 30. As expected, the largest
differences occur in the marginal ice zone where the ice concentration is low. This area comprises the
ice edge in the winter (northern) hemisphere and most of the pack in the summer (southern) hemisphere.
Figs. 3 and 4 show the ice area and velocity for the control run and the corresponding difference plots for
January and July in the Arctic. These plots are cut out from the top left corner of the logical grid shown
in Fig. 2; Greenland lies along the top, Iceland is the large island to the left, Spitzbergen is the island
near the upper center, and the Eurasian continent is the land mass at the bottom of these plots. Alaska is
in the lower right corner.

Differences in the ice area are minor except near the ice edge, where the concentration is less that
about 90%. The biggest difference for ice velocity appears to be direction. Reduced wind stress would
make the ice drift slower, but reduced ocean drag compensates for that somewhat; the Coriolis term in
the test run is more important relative to the wind and ocean stresses than in the control run, resulting in
turning of the velocity vectors.

Fig. 5 indicates the effect of this change in the ice model on the simulated ocean characterics. Near
the ice edge, the mean annual sea surface temperature (SST) reflects the change in ice area, with cooler
temperatures where there is more ice coverage in the test run and warmer temperatures where there is

4



less ice. The velocity difference vectors reflect the relative turning of the ice motion in the test run with
respect to the control, with generally slower surface currents. Note that there are changes in the SST
and surface currents even in the North Atlantic, far from the sea ice edge. These changes are transmitted
through the ocean, as the ice velocity is zero in grid cells where there is no ice.

Although the changes in the ice and ocean simulation are widespread, they are relatively small. We
observe differences in the details of the simulation, but we do not expect these changes to significantly
affect the simulated climate. However, the change to the model described above is important because
it makes the simulation more accurate, in the sense that it now takes into account physical information
about the ice-free areas that was merely estimated in the control run.
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Figure 1: 3◦ global grid with the north pole singularity in Greenland.
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Figure 2: Difference in ice area fraction (color) and velocity difference vectors (test-control, m/s) for January
of year 30, plotted in logical space.
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Figure 3: Arctic ice area fraction and velocity (m/s) for January, year 30. (a) control, (b) test-control.
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Figure 4: Arctic ice area fraction and velocity (m/s) for July, year 30. (a) control, (b) test-control.
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Figure 5: Mean annual Arctic SST (◦C) and surface currents (cm/s) for year 30. (a) control, (b) test-control.
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